NASA ADEPT Folding Heat Shield for Mars

NASA ADEPT Folding Heat Shield for Mars
(Image Credit: NASA)

The good folks at NASA have conducted the first flight test of a new foldable heat shield on September 12th, with great success. This new concept is touted as a transformative technology that will enable larger and lighter ships to perform more advanced missions, not the least of which will be both cargo and crew missions to Mars with an enhanced ability to survive the rigors of reentry using a vastly slimmed down system. Any time you can save weight on a spacecraft, that savings can be redistributed to more critical areas, namely additional cargo and scientific apparatus (and pizza ovens).

Called the Adaptive Deployable Entry and Placement Technology (ADEPT), a backronym worthy of Gary Busey, it consists of a 3D-woven carbon fibers arranged in a thick layer, formed on top of a structure which can flex and deploy the shield. This is in contrast to the traditional rigid, heavy, difficult to construct plastic shielding which has been used for decades. It’s this sort of novel and creative thinking which will allow us to accomplish more important and ambitious flight objectives, and is another great sign that key decision makers are aligned correctly to move us forward.

You can check out a video of the heat shield here!

References:

NASA CO2 Conversion Challenge

NASA CO2 Conversion Challenge
(Image Credit: NASA)

The good folks at NASA, ever managing to be on the leading edge, have just launched a competition encouraging teams to develop a system to convert carbon dioxide into glucose. Why is this important? Well, sugar-based biomaterials are plentiful on this planet thanks to our helpful plant life. That will not be the case as we set out among the stars! Developing bioengineering methods to create base materials that will be in short supply (such as easy to metabolize sugars like glucose) from materials that are in great abundance (carbon dioxide) will be a crucial step towards facilitating our successful advancement.

This competition is broken into two phases:

  • Phase 1: Teams submit a design and description of a method to perform the stipulated conversion. Up to 5 teams will be awared $50,000 each, as will be announced in April 2019.
  • Phase 2: Actually building a working system to perform the conversion. The successful team will walk away with $750,000.

This new contest is part of NASA’s Centennial Challenges program, which was initiated in 2005, intended to directly engage the public in advanced technology development. Basically, NASA is being very observant and starting to crowd-source ideas and research, which makes a great deal of sense in our current world.

To register for the competition, check out the official website!

References:

Mars Dust Storm Finally Slowing

Mars Surface - Rover Tracks
(Image Credit: NASA/JPL-Caltech/Cornell/Arizona State Univ.)

A planet-wide dust storm, which was first seen on May 30, 2018, is finally winding down on the windy red planet. NASA’s rover Opportunity, which is solar powered, has suffered a shutdown as a result of this storm – going into what amounts to hibernation to ride out the storm. However, that dormant period has been longer and more intense than originally designed to handle, so everyone is on edge waiting to see if we can get the rover back on line.

Signals are being sent to the 15 year old rover, which is tucked away in Perseverance Valley, in the hope that once the batteries are recharged even a little, the unit will initiate recovery procedures.

We’ll keep you posted on the status of this fan-favorite rover; and hopefully some readers of this site will one day visit it in a science museum with 38% the surface gravity of Earth.

References:

SpaceX – Pad 39a Crew Access Arm

SpaceX Crew Access Arm at Pad 39a
(Image Credit: Tom Cross)

One of the great things about having a genius-level CEO who is hell-bent on pushing mankind into the world they expected to already exist and is a massive sci-fi fan, is that the design aesthetic for everything his companies do is very consciously ‘futuristic’. And why not? It is fantastic to boldly own the fact that we really should look like the Jestons by now, instead of something from the set of 1984’s Repo Man.

A perfect example of this is the new Crew Access Arm (CAA) that SpaceX has installed on Pad 39a at Cape Canaveral. Seeing crew-based hardware going back up on this historic pad should make anyone familiar with recent history very excited, as it was from this very location that all Apollo missions to the moon, powered by the Saturn V, were launched along with many of the more recent Shuttle missions. Restoring that capability to American soil, through American inginuity is something we should all be proud of, and is something to be recognized and celebrated.

From a broader perspective – I believe firmly that the exploration and development of space will be a unifying force for a fractured world. Certainly there will be some unexpected struggles, as there always are, but I think that humans need a sense of adventure and exploration. It’s part of our makeup. We are lacking that now, and spinning our wheels with reality shows and iPhone apps, and basically circling the drain without a shared purpose. Space will be that purpose, and I feel will allow us to lift up from the state in which we find ourselves and achieve the next, better stage of our enlightened development, together as one people.

References:

  • Teslarati – SpaceX’s futuristic Crew Dragon astronaut walkway is ready for US human spaceflight revival

Mars Workshop Hosted by SpaceX

SpaceX Mars Conference
(Image Credit: Dr. Phil Metzger @DrPhiltill)

Last week, SpaceX hosted a closed-door. invitation only Mars workshop, intended to bring together an interdisciplinary team of industry leading experts to discuss the plan for the red planet. Details on this meeting are, as you would imagine, still pretty minimal, but it is encouraging that this sort of thing is starting to ramp up, and the right questions are being asked of the right people.

A recent criticism that has been lodged against SpaceX is that they are very focused and successful with solving the engineering problems required to improve rocket technology and build the pathway to Mars. However, the amount of time spent considering the human factor, and how difficult it will be to keep astronauts alive both on the journey as well as once they have arrived is far less. Challenges ranging from radiation exposure (in space and on the surface) to adequate supplies to the ‘dust problem’ to basic human interactions all need to be considered and seriously addressed. Since Musk’s companies all show a propensity for thinking of the edge cases and surprising us when we think they are missing an angle, I maintain great confidence that what needs to be considered, is well under way.

References:

NASA Names Commercial Spaceflight Astronauts

Commercial Crew Astronauts
(Image Source: NASA)

On August 3rd, NASA officially named the astronauts who will fly on the SpaceX and Boeing crew modules destined for the International Space Station. This is a tremendously important step, as it is allowing the US to reclaim their own access to space instead of relying on Russian launch capability as it has since 2011 when the Shuttle was officially mothballed.

On the SpaceX Crew Dragon:

  • (test flight) Col. Bob Behnken of the Air Force
  • (test flight) Doug Hurley, a retired Marine Corps colonel
  • (ISS) Mike Hopkins, Air Force colonel
  • (ISS) Victor Glover, Navy commander

On the Boeing CST-100 Starliner:

  • (test flight) Eric Boe, a former space shuttle pilot who retired from the Air Force
  • (test flight) Christopher Ferguson, a Boeing astronaut who left NASA in 2011
  • (test flight) Lt. Col. Nicole Mann of the Marine Corps
  • (ISS) Williams, a retired Navy captain
  • (ISS) Cmdr. Josh Cassada of the Navy

The test flights will be here before we know it, with uncrewed flights of the new modules scheduled for late 2018, and the first human test flights slated for mid-2019.

References:

Mars – as Close as it Gets

Close Mars
(Image Credit: Hubble (NASA, ESA, and STScI))

NASA is reminding everyone that today, July 31st 2018, is the closest Mars will be to Earth for the next 269 years, at a distance of 35.8 million miles (57.6 million kilometers). That means, unless those of us alive now are very very lucky and some medical advances happen in the next 10-20 years, we probably won’t be around for the next one.

If it is cloudy where you are, don’t stress too much – the next close approach, while not prize winning, will still be fun to observe and will take place Oct. 6, 2020.

So – get out there and keep watching the skies!

References:

Liquid Water Discovered on Mars

Surface ice near the South Pole - liquid water underneath
(Surface ice near the South Pole – liquid water underneath)
Image Credit: NASA/JPL/MALIN SPACE SCIENCE SYSTEMS

A team from the Italian National Institute for Astrophysics, using Marsis, a radar instrument on board the European Space Agency’s (Esa) Mars Express orbiter, believe they have discovered a nearly 20km (12 mile) underground liquid water lake on everyone’s favorite backup planet. This is significant for oh so many reasons, and we need to get a probe over there stat and see about what may be swimming around.

The technique for finding this new Mars feature utilized the radar capability of Marsis, and the team realized that reflections from the bottom of a subsurface feature were stronger than reflections from the surface which, in radar terms, is a good sign of liquid H2O.

References:

Fluvial Stream Evidence on Mars

Fluvial Mars
(Image Credit: ESA/DLR/FU Berlin, CC BY-SA 3.0 IGO)

Mars has a lot of interesting surface features, and a new study claims to have decent reason to believe that many of the structures which resemble fluvial stream networks on Earth were formed by the same processes on Mars. Namely, it speaks to the existence of a climate and atmosphere which was able to support frequent and heavy rainfall, on a planet that may have been much wetter than even we had thought.

This all goes to show that Mars continues to surprise us, the more we learn about it, and that the vast undertaking of coming to terms with an entirely new celestial body is more meaningful and challenging than we can imagine.

Wind Power on Mars

Mars Wind Storm
(Image Credit: Ron Miller / weather.com)

A new study from Boston University’s Center for Space Physics has determined that wind is an effective option for power generation on Mars! This is especially important to combat times of low solar activity such as we are seeing with the current dust storm, and to balance power needs when a piece of equipment may be in a limited sunlight environment for half the year. Additionally, radioisotope power (ie. nuclear) as powers the Curiosity rover would be counter-indicated in a polar region as it would impact any science experiments being conducted.

The original experiments for this paper were conducted in 2010. At the time it was determined that wind was a possible power source given climate conditions on the Red Planet, however there were concerns over the required size of the turbines given the state of technology at the time. Now with 8 more years of materials science and research behind us, the equipment that could be deployed for this purpose has sufficiently improved that it truly can be seen as a viable option. Another great step forward for Mars!

Mars Wind Turbines
(Figure 1: (left) The wind turbine positioned in the wind tunnel, which is 2m in diameter. (right) Close-up of the wind turbine with the wind tunnel fan visible in the background.
Image Credit: Holstein-Rathlou of Boston University )

References: